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Abstract
The structural and electronic properties of GaAs under high pressure have been investigated
using an ab initio pseudo-potential approach within the framework of density functional theory.
We use the local density approximation based on exchange–correlation energy optimization for
calculating the total energy. The phase transition B3 → B1 → B2 in bulk GaAs is investigated.
Results of the first-principles calculation of the structural phase transition and the electronic
properties of GaAs in the three different crystallographic structures are reported. GaAs is found
to undergo structural transition from B3 to B1 phase, demonstrating a reasonably good
agreement with experimental data. The equation of state for these transformations also shows
good agreement with experimental results. The calculated value of volume collapse is close to
the observed data. The energy of the B2 phase is found to be slightly higher than that of the B1
phase. A possible mechanism for the B3 → B2 transition characterized by the space group
Pm3̄m is discussed. The calculated values show that there is a relatively small value of
enthalpy for the B3 → B1 transition as compared to the B3 → B2 transition, which provides
the transition behaviour of GaAs from the kinetic viewpoint. The electronic structures have also
been computed at different volumes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The availability of higher resolution in high pressure diffrac-
tion experiments and developments in diamond anvil cell tech-
niques have shed new light on the atomic scale mechanisms
of structural phase transitions in semiconductors [1, 2]. Re-
cently, it has become possible to compute with greater accu-
racy an important number of electronic and structural param-
eters of solids from first-principle calculations [3–8]. These
developments in computer simulations have opened up many
interesting and exciting possibilities in condensed matter stud-
ies. It is now possible to explain and predict properties of solids
which were previously inaccessible to experiments. It gives us
a clearer understanding of the theories of condensed matter and
the determination of fundamental parameters. Experimental as
well as theoretical studies of the structural phase transforma-
tions under pressure and of mechanical properties of materi-
als have attracted the attention of researchers in the last few
decades [9, 10].

The material GaAs belongs to the III–V group with binary
octets of AN B8−N type and has certain electronic properties

superior to silicon. For example, it has higher saturated
electron velocity and higher electron mobility, allowing it
to function even at frequencies in excess of 250 GHz. It
is a material recommended for circuitry in mobile phones,
microwave links and radar systems. Under ambient conditions,
it is a direct band gap semiconductor and hence can be used to
emit light. Because of its high switching speed, it would seem
to be ideal for computer applications. This material is found to
have a four-fold coordinated zinc blende (B3) structure under
ambient conditions. Under high pressures, it transforms to the
six-fold coordinated rock salt (B1) structure followed by the
eight-fold coordinated CsCl (B2) structure.

The aim of the present computation is to perform a
comparative study of the structural phase transition and
electronic structure of GaAs (from B3–to–B1–to–B2) by using
SPHInX code based on density functional theory (DFT) by
the ab initio pseudo-potential method. A survey of the
literature reveals that earlier workers have computed either
phase transformation or band/electronic structure. Not many
theoretical studies of the electronic structure of GaAs in the
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B2 phase are available. Hence, we thought it pertinent to
study the B3 → B1 → B2 phase transformation along with the
electronic structure and density of states (DOS) in different
phases to study the change in band shapes, band gap and
semiconductor to metal transition. This is expected to lead us
to a better understanding of the interactions.

The material chosen for the present study, GaAs, shows
complicated phases under high pressure. Under pressure, it
transforms from the zinc blende structure (GaAs-I) into an
orthorhombic phase (GaAs-II), with proposed space group
Pmm2 [2] whose structure can be seen as a distortion of the B1
(space group Fm3m) phase [3–5]. The transition pressure was
about 17 GPa [2] and the latest result is 12±1.5 GPa [1]. When
pressure is above 24 GPa, the diffraction pattern suggests
a further transformation from GaAs-II to GaAs-III (a body-
centred orthorhombic structure, with space group Imm2) and
a gradual transformation to GaAs IV hexagonal structure in the
pressure range 60–80 GPa [2] and finally to B2 phase at around
124 GPa.

Our present study is concentrated on the GaAs-I to GaAs-
II transition (distorted B1 structure) which is simplified as a
perfect B1 structure [6] and B3 → B2 phase transition.

This paper is organized as follows. In section 2, we briefly
describe the theory used and the method of computation of
parameters used in the calculations. In section 3, we discuss the
calculated results on structural phase transition and electronic
properties and finally the paper is concluded in section 4.

2. Theory and method of calculation

The calculations have been performed using the ab initio
pseudo-potential approach as implemented in the SPHInX
code, within the framework of DFT [11], which has been
known to yield reliable results for the electronic and structural
properties of materials with d-electrons. The time-independent
Schrödinger equation for ions (i.e. the atomic nuclei) and
electrons for a many-body wavefunction � is given as:

H� = E�

or(
− h̄2

2me

∑
i

∇2
i +

∑
i,I

Z I e2

|ri − RI | + 1

2

∑
i �= j

e2∣∣ri − r j

∣∣
−

∑
I

h̄2

2MI
∇2

I + 1

2

∑
I �=J

Z I Z J e2

|RI − RJ | − E

)
ψ = 0.

Here, the electrons are denoted by lower case subscripts and
nuclei (ions) with charge Z I and mass MI , respectively, by
upper case subscripts. The second, third and fifth terms in
the above equation denote the Coulomb interactions between
electrons and ions, electrons and electrons and ions and ions,
respectively. Setting the mass of the ions (nuclei) as infinite,
the kinetic energy of the ions (nuclei) can be ignored.

The many-body problem has been simplified using DFT,
in which electronic charge density is assumed to be the
fundamental variable rather than the wavefunction, i.e. it is
assumed that for a given non-degenerate non-polarized ground
state wavefunction, there is a unique electron density. Thus

� is a unique functional of the charge density, and hence
the energy (E) is uniquely defined by charge density. It is
a ground state theory that incorporates both exchange and
correlation effects, and is computationally more efficient than
the Hartree–Fock method which includes eigenvalues that do
not necessarily correspond with the physical eigenvalues of
the system (with the exception of the highest occupied state)
as well as poor excited state modelling and hence band gap
prediction.

Hohenberg and Kohn [12] proved that the total energy of
a system, including that of the many-body effect of electrons
(exchange and correlation) in the presence of static external
potential, is a unique functional of the charge density. The
minimum value of the total energy functional is the ground
state energy of the system. The electronic charge density which
yields the minimum is then the exact single particle ground
state energy.

It was then Kohn and Sham [13] who showed that it is
possible to replace the many-electron problem by an exactly
equivalent set of self-consistent one-electron equations. The
total energy functional can be written as a sum of several terms:

E[ρ(r)] = Ts[ρ(r)]+ e2

2

∫ ∫
ρ(r)ρ(r′)
|r − r′| d3r d3r′+ Exc[ρ(r)]

where Exc[ρ(r)] is the exchange–correlation energy. Some
details are presented in the appendix.

The exchange–correlation potential is calculated using the
local density approximation (LDA) [13]. In this, the exchange–
correlation energy (ECE) of an electronic system is constructed
by assuming that the ECE per electron at a point r in the
electron gas εxc(r) is equal to the ECE per electron in a
homogeneous electron gas that has the same electron density
at the point r. It follows that

ELDA
xc [ρ(r)] =

∫
εhom

xc [ρ(r)]ρ(r)d3r.

Therefore, the exchange potential in LDA

vLDA[ρ(r)] = δELDA
xc [ρ(r)]
δρ(r)

= δ
[∫
ρ(r)εhom

xc ρ(r)
]

δρ(r)

= εhom
xc [ρ(r)] + δεhom

xc [ρ(r)]
δρ(r)

ρ(r).

2.1. Determination of the total energy and theoretical
equilibrium lattice constant

The total energy (E) is calculated by a self-consistent run
and can be expressed as the sum of the kinetic energy of
electrons, self-energy, Hartree energy, electrostatic energy,
local pseudo-energy, non-local energy, exchange–correlation
energy, exchange–correlation potential energy and screening
energy.

The lattice constant of a solid corresponds to the size of
the conventional unit cell length at the equilibrium volume and
is obtained computationally by minimizing the total energy
as a function of cell volume. We have performed several
calculations of the total energy for various lattice constants
and obtained the value of lattice constant for which the total
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Figure 1. The variation of energy (hartree per unit cell/atom) versus
reduced volume for various structures of GaAs.

energy becomes minimal. The calculation of lattice constant is
straightforward for cubic systems—it is performed at several
different volumes using the same energy cut-off and k-point
sampling.

The results are fitted to the Murnaghan equation of state

P(V ) = B0

B ′
0

[(
V0

V

)B ′
0

− 1

]
.

Here, B0 is the equilibrium bulk modulus and B ′
0 its first

pressure derivative. Here the pressure (P) is the negative
derivative of the total energy

P = −∂E

∂V
.

Therefore, B0 effectively measures the curvature of the energy
versus volume curve at the relaxed volume (V0).

B0 = −V

(
∂P

∂V

)
T

and B ′
0 =

(
∂B0

∂P

)
T

.

Norm-conserving non-local pseudo-potentials [14] were
constructed for Ga3+ and As5+ ions using the method
of Hamann [15] and the pseudo-potentials include scalar
relativistic effects.

A mesh of 4 × 4 × 4 special k-points is taken in the
whole Brillouin zone for all three phases and a cut-off energy
of 24 Ryd for B1 and B3 phases and of 34 Ryd for the B2
phase is taken. Both the plane wave cut-off and the number of
k-points were varied to ensure total energy convergence.

3. Results and discussion

GaAs at ambient pressure crystallizes in the zinc blende
(B3 phase) structure and undergoes a transition to the rock
salt (B1 phase) structure upon compression. Besides, it also
transforms to CsCl (B2 phase) structure at very high pressures.
In this work, we analyse all the three structures using the LDA.
The total energies, calculated as a function of volume (Å

3
) are

reported in figure 1. The curves are obtained by fitting the
calculated values to Murnaghan’s equation of state [16]. In
this graph, the volume is expressed in terms of the theoretical
zero pressure volume of the B3 phase V GaAs

0,theor (42.97 Å
3
).
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Figure 2. Total energy (E) versus lattice constant (a) for GaAs in the
parent phase (B3).

Table 1. Values of the calculated lattice parameter (a, in Å), the bulk
modulus (B0, in GPa) and its pressure derivative (B ′

0) at equilibrium
volume for B3, B1 and B2 phases and the Ga–As distance (in Å) in
the B1 phase at transition pressure (PT) of GaAs.

a B0 B ′
0 Ga–As distance at PT Reference

GaAs in B3 phase

5.56 79.75 3.50 — Present work
5.65 74.8 4.49 — Expt [17, 18]
5.51 82.1 — — Others [4]
6.41 — — — Others [10]

GaAs in B1 phase

5.28 69.95 4.87 2.47 Present work
— — 2.48 Expt [1]

GaAs in B2 phase

4.80 50.30 5.84 — Present work

It is seen from this figure that the results obtained by us
are in good agreement with the results obtained by Garcia
and Cohen [4] (who have employed similar theory to calculate
these properties) and better than those obtained by Singh and
Singh [10] for the B3 → B1 phase transition of GaAs. The
energy of the B1 phase is higher than that of the B3 phase while
that of the B2 phase is higher than the energy of the B1 phase
which is the criterion for the relative stability of the competitive
phases.

Results for the convergence of energy with respect to
lattice constant are shown in figure 2. It is found that the
convergence occurs close to the experimental lattice constant.
This correct description of lattice constant shows that the
interaction considered in the present formulation is capable of
predicting correctly the minimum free energy of GaAs in the
B3 phase.

The corresponding equilibrium lattice parameter in B3,
B1 and B2 phases as well as the bulk modulus B0 and its
pressure derivative B ′

0 are listed along with the corresponding
experimental values [17] and values computed by others [4, 10]
in table 1. Since GaAs occurs in the B3 phase in
ambient conditions, which is the parent phase, and its B0

is comparatively higher than that of compressed B1 and B2
phases, it indicates compression in all the three directions of
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(a)

(b)

Figure 3. Variation of the Gibbs free energy difference (�G) with
pressure (P): (a) for B3 → B1 transformation and (b) for the
B3 → B2 transformation in GaAs.

bulk GaAs. Due to compression, the ions rearrange themselves
to minimize the Gibbs free energy for hypothetical structures.

To determine the phase transition pressure at T = 0 K
(i.e. the entropy of the crystal is ignored) the Gibbs free energy
(G = E + PV ) of B3, B1 and B2 phases is calculated at
different pressures. The pressures at which�G (= GB1 − GB3

and GB2–GB3) becomes zero is called the phase transition
pressure (PT). The B3 → B1 and B3 → B2 phase transition
pressures are calculated using the LDA scheme. The Gibbs
free energy difference (�G) thus obtained is plotted as a
function of pressure (P) in figures 3(a) and (b). The pressure
corresponding to �G approaching zero is PT and is indicated
by the arrows in these figures.

It is clear from figure 1 and table 2 that at zero pressure,
the B3 phase is a thermodynamically stable state of GaAs
because the computed Gibbs free energy is found to be
a minimum, which is in agreement with the experimental
results and remains stable until the pressure reaches a value
of about 10.5 GPa. It is also clear from this table that
the values of �E for B3 → B1 and B3 → B2 phases are
positive, which is a necessary condition for the stability of
the two competitive phases. As pressure increases beyond
the phase transition pressure (PT = 10.5 GPa for B1
phase and 128.8 GPa for B2 phase, respectively), the phase
at which free energy becomes more negative will become
thermodynamically stable. At pressures above 10.5 GPa,
the B3 phase becomes thermodynamically unstable while

Figure 4. Phase diagram of GaAs where dotted (· · · · · ·) lines are the
extrapolated data of the B1 phase.

Table 2. Calculated values of the phase transition pressure (PT, in
GPa) for B3 → B1 and B3 → B2 phases, volume collapse (%) at
phase transition pressure, energy of the structures at zero pressure
with respect to that of the B3 phase�E = {(EHypo – E0(B3 phase)) in

hartree per unit cell/atom} and volume (V0, in Å
3
) of GaAs. The

results are also compared with the available experimental and other
theoretical data.

B3 → B1 B3 → B2 Reference

PT 10.5 128.8 Present work
12 ± 1.5 — Expt [1]
12.3 — [6]
11.8 — [4]
17.0 — [10]
16.0 — [19]
26.7 — [9]
— ∼124 [7]

�V (P)/V (0) 13.8 — Present work
14.0 [10]

B3 phase B1 phase B2 phase

�E 0.00 0.05 0.10 Present work
V0 42.97 36.80 27.65 Present work

45.17 — — Expt [20]

the B1 phase remains stable and the B2 phase seems to be
stable above 128.8 GPa.

To understand the mechanism of the transformation of a
semiconductor to other phases, we have plotted the variation of
the relative volume V (P)/V (0) with pressure (P) in figure 4
computed from the Murnaghan equation of state [16] as

V

V0
=

(
1 + B ′

0

B0
P

)−1/B ′
0

.

It is clear from figure 4 that the volume changes smoothly
up to 10.5 GPa. At this pressure, an abrupt decline of volume
is seen. After 10.5 GPa, volume decreases gradually and at
128.8 GPa another change of volume is obtained, beyond this
and up to 200 GPa no sharp modification of volume is seen.
The magnitude of the discontinuity in volume at the transition
pressure is obtained from the phase diagram shown in figure 4
and its values are tabulated in table 2.
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3.1. Electronic properties

To understand the change in the nature of the bands, we
have calculated the total density of states (TDOS) and band
structure at the LDA level of theory for GaAs along the
directions of high symmetry in four different structures or
densities, i.e. in (i) B3 phase at zero pressure; (ii) B3 phase
just before the B3 → B1 phase transition; (iii) B1 phase just
after the B3 → B1 phase transition; (iv) B2 phase just after
the B1 → B2 phase transition. The overall band profiles are in
fairly good agreement with previous results [8, 21].

Under ambient conditions, GaAs is stable in the B3 phase
having a semiconducting gap produced by the arrangement of
electrons into the bonding orbital. In figure 5(a), the valence
band maximum (VBM) and conduction band minimum (CBM)
occur at the 	 point. Thus, the energy gap is direct with a value
of about 0.9 eV, while the experimental value is 1.45 eV. The
band gap is underestimated in comparison with experimental
results. This underestimation of the band gap is mainly due to
the fact that the simple form of LDA does not take into account
the quasi-particle self-energy correctly [22] which makes it
not sufficiently flexible to accurately reproduce both exchange-
correlation energy and its charge derivative. It is noted that
the density functional formalism is limited in its validity [23]
and the band structure derived from it cannot be used directly
for comparison with experiments. The conduction band of
GaAs follows the same trend; these bands arise from Ga ‘d’-
like states with a little contribution from ‘p’-like states of As-
atom. The lowest lying band arises from ‘s’-like states of the
As-atom. The upper valence bands which lie above this band
are mainly due to ‘p’-like states of the As-atom with the top
occurring at the 	 point.

It is clear from figure 5(b) that at the 	 point, the top of the
valence band rises up to the Fermi level and at the X point the
bottom of the conduction band drops in energy and lies down
near the Fermi level. Hence, it seems to become an indirect
band gap (	 → X) of about 0.58 eV. When we increase
the pressure, the B1 phase compresses (figure 5(b)) and the
bonding region becomes smaller. Therefore, kinetic energy of
the electrons in the bond increases and the energy difference
between the valence band and conduction band decreases.
The behaviour of the lowest conduction band at the X point
shows this change. It is localized in the octahedral region
between the anions and as the volume is compressed, the state
drops in energy and reduces the band gap. Therefore, at high
pressures, the B3 phase would be metallic. However, before
this can occur, the crystal transforms into other structures.
The gap which makes the B3 phase stable at low pressures is
responsible for the instability at high pressures.

The band structure and the density of states for GaAs in the
B1 phase (just after the B3 → B1 phase transition) are shown
in figure 5(c). It is clear from this figure that there is a well-
developed gap at the Fermi level (the same as that of the B3
phase). But the conduction band at the X point lies below the
valence band maximum at the 	 point and this makes the B1
phase metallic.

The pressure dependence at the X point in the B1 phase
is opposite to the behaviour in the B3 phase. It is clearly seen
from figures 5(a) and (b) that as the pressure increases the band

(a)

(b)

(c)

(d)

Γ Γ

Γ Γ

Γ Γ

Figure 5. (a) Band structure and DOS of GaAs in the B3 phase at
zero pressure. (b) Band structure and DOS of GaAs in the B3 phase
just before the B3 → B1 phase transition. (c) Band structure and
DOS of GaAs in the B1 phase just after the B3 → B1 phase
transition. (d) Band structure and DOS of GaAs in the B2 phase just
after the B1 → B2 phase transition.
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Figure 6. Valence bandwidths as a function of pressure in the B3
phase of GaAs.

overlap in the B3 phase increases but from figure 5(c) the band
overlap decreases with increase in pressure in the B1 phase.

The band structure and the DOS of GaAs in the B2
phase (just after the B1 → B2 phase transition) are shown in
figure 5(d). It is clear from this figure that at the 	 point the
conduction band lies below the Fermi level but still there is a
gap of about 0.16 eV, but at the N point the top of the valence
band overlaps with the conduction band. Hence at the N point,
band overlap metallization occurs. The metallization is due to
band broadening with the increase in pressure and subsequent
overlap of the filled valence (the p-like valence band of the
anion) and the conduction band (the d-like conduction band of
the cation).

It is clear from the DOS at different volumes that as
the volume decreases the small side peaks start growing
throughout the energy range, which clearly shows that
these changes in the DOS may be responsible for a phase
transformation from four- to six-fold structure. It is also clear
from the DOS of B3 and B2 phases (figures 5(a) and (d)), that
the ‘s’-like band has the same shape and size with a minor
change in peak height, hence we can say that the ‘s’-band does
not participate actively in phase transformation.

The dependence of the valence bandwidth (VBW) on
hydrostatic pressure for GaAs with B3 phase is shown in
figure 6. It is clear from this figure that VBW increases with
increase in pressure from 0 to 50 GPa. This suggests that
there is a decrease of the ionicity character of GaAs under
hydrostatic pressure.

4. Conclusion

We have used the LDA within the pseudo-potential method to
study the structure and electronic properties at normal as well
as high pressure phases of GaAs. The structural parameters,
phase transition pressure and volume collapse are found to be
in good agreement with experimental and previous theoretical
results. The energy band gap under ambient conditions in
the B3 phase has been calculated and it is slightly less than
the experimental value. The pressure dependence of the
valence bandwidth is also investigated and shows a reasonable
explanation for the ionic character of GaAs.
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Appendix

Appendix.1 Hohenberg–Kohn theorem

(1) v(r)
1−1←→ ρ(r)

gives the one-to-one correspondence between external
potentials v(r) and ground state densities ρ(r).

(2) Variational principle
Given a particular system characterized by the external
potential v0(r), the solution of the Euler–Lagrange
equation

δ

δρ(r)
EHK[ρ] = 0

yields the exact ground state energy E0 and ground state
density ρ0(r) of this system

(3) EHK[ρ] = F[ρ] + ∫
ρ(r)v0(r) d3r

F[ρ] is universal and expressed as F[ρ] = F (0)[ρ] +
e2 F (1)[ρ] + e4 F (2)[ρ] + · · · where: F (0)[ρ] = Ts [ρ]
(kinetic energy of non-interacting particles)

e2 F (1)[ρ] = e2

2

∫ ∫
ρ(r)ρ(r′)
|r − r′| d3r d3r′ + Ex[ρ]

(Hartree + exchange energies)
∞∑

i=2

(e2)i F (i)[ρ] = Ec[ρ] (correlation energy)

⇒ F[ρ] = Ts[ρ] + e2

2

∫ ∫
ρ(r)ρ(r′)
|r − r′| d3r d3r′

+ Ex[ρ] + Ec[ρ].

Appendix.2 Kohn–Sham equations

Mapping of the interacting many-electron system onto a
system of non-interacting electrons moving in an effective
potential due to the other electrons means that we can write
the Schrödinger equation for an electron in the non-interacting
system as:

[− 1
2∇2 + veff(r)

]
ψi (r) = εiψi (r) i = 1, 2, . . . , N

where veff(r) = v0(r)+ vH[ρ(r)] + vxc[ρ(r)] therefore,

[− 1
2∇2 + v0(r)+ vH[ρ(r)] + vxc[ρ(r)]

]
ψi (r) = εiψi (r)

where Hartree potential vH[ρ(r)] = ∫
ρ(r′)
|r−r′ | d3r′;

6
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The exchange correlation potential, vxc[ρ(r)] = δExc[ρ(r)]
δρ(r)

with the electronic density of N electrons

ρ(r) =
N∑

i=1

|ψi (r)|2.

The wavefunctions �i(r) are called the Kohn–Sham orbitals.
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